191 research outputs found

    Metal-organic frameworks as selective or chiral oxidation catalysts

    Get PDF
    Since the discovery of Metal Organic Frameworks (MOFs) in the early 1990s, the amount of new structures has grown exponentially. A MOF typically consists of inorganic nodes that are connected by organic linkers to form crystalline, highly porous structures. MOFs have attracted a lot of attention lately, as the versatile design of such materials holds promises of interesting applications in various fields. In this review, we will focus on the use of MOFs as heterogeneous oxidation catalysts. MOFs are very promising candidates to replace homogeneous catalysts by sustainable and stable heterogeneous catalysts. The catalytic active function can be either the active metal sites of the MOF itself or can be introduced as an extra functionality in the linker, a dopant or a "ship-in-a-bottle" complex. As the pore size, pore shape, and functionality of MOFs can be designed in numerous ways, shape selectivity, and even chiral selectivity can be created. In this article, we will present an overview on the state of the art of the use of MOFs as a heterogeneous catalyst in liquid phase oxidation reactions

    Development of covalent triazine frameworks as heterogeneous catalytic supports

    Get PDF
    Covalent triazine frameworks (CTFs) are established as an emerging class of porous organic polymers with remarkable features such as large surface area and permanent porosity, high thermal and chemical stability, and convenient functionalization that promotes great potential in heterogeneous catalysis. In this article, we systematically present the structural design of CTFs as a versatile scaffold to develop heterogeneous catalysts for a variety of chemical reactions. We mainly focus on the functionalization of CTFs, including their use for incorporating and stabilization of nanoparticles and immobilization of molecular complexes onto the frameworks

    POM@MOF hybrids : synthesis and applications

    Get PDF
    The hybrid materials that are created by supporting or incorporating polyoxometalates (POMs) into/onto metal–organic frameworks (MOFs) have a unique set of properties. They combine the strong acidity, oxygen-rich surface, and redox capability of POMs, while overcoming their drawbacks, such as difficult handling, a low surface area, and a high solubility. MOFs are ideal hosts because of their high surface area, long-range ordered structure, and high tunability in terms of the pore size and channels. In some cases, MOFs add an extra dimension to the functionality of hybrids. This review summarizes the recent developments in the field of POM@MOF hybrids. The most common applied synthesis strategies are discussed, together with major applications, such as their use in catalysis (organocatalysis, electrocatalysis, and photocatalysis). The more than 100 papers on this topic have been systematically summarized in a handy table, which covers almost all of the work conducted in this field up to now
    • …
    corecore